

Methods of Biomaterials Testing Lesson 3-5

Biochemical Methods Antibodies

Vaccination

Conclusion

Second Mouse produced neutralizing "antibodies" against the bacteria

Much later the Antibody ("Ab") was identified as a protein:

Ball-like, globular Protein

→ "Immunoglobine" (Ig)

Different classes: IgG, IgM, IgA, IgD, IgE

Antibody

- Antibodies have Y shape with two identical binding sites at the ends
- The counterpart/ target of an antibody is called "antigen".
- Antigens can be bacteria, viruses or any type of protein, especially proteins from an other species of animal.
- One antibody recognizes only a small part of an antigen (~ 7 aminoacids): "epitope"
- One antigen usually has several epitopes (antibody binding sites)
- The recognition is highly specific (sequence and 3D structure)
- The antibody binding can lead to crosslinking of the antigens
- Antibody binding is a reversible association, but with very high affinity
- Antibody binding per se does not kill the bacterium

Antibody Structure

Light chain

An antibody consists of two identical parts

Molecular description:

 Each part consists of a heavy and a light chain

The heavy chain determines the class (IgG, IgM, IgA, IgD, IgE)
The light chain can be either kappa or lambda

- Functional Description:
 - crystalline (constant) fragment (F_c) antigen binding fragment (F_{ab})
 - contains whole light chain
 - contains part of the heavy chain
 - both chains in the F_{ab} fragment have a constant (C) and a variable (V) domain

Terminology

- Antiserum: Serum of a vaccinated animal with many antibodies in it
- Polyclonal antibody: Many different antibodies against different epitopes of one antigen.
- Monoclonal antibody: One type of antibody, which is directed only against one epitope of the antigen.
- Affinity purified antibody/ antiserum: Polyclonal antibody which only has antibodies against the target antigen.
- Cross reactivity: (1) The antibody reacts with the equivalent protein of an other species
 - (2) The antibody reacts with other/ similar proteins of the same/ other species
- Preadsorbed antibody: Polyclonal antibody, where those antibodies with crossreactivity to other antigens are removed.

What for?

 Antibodies can block or activate receptors and channels

- It is possible to produce antibodies against antibodies (constant fragments).
 i.g. "Rabbit anti Mouse-IgG kappa chain". Or "Goat anti Rabbit IgG F_c
 Fragment"
- It is possible to label the antibody at the F_c fragment with
 - An enzyme (Alkaline Phosphatase (ALP) or Horseradish Peroxidase (HRP). Both can induce a color reaction
 - A fluorescent molecule/ dye (Fluoresceinisothiocyanate (FITC), Rhodamin, Phycoerythrin (PE), APC.....
 - Gold particles (TEM contrast)
 - Biotin: Has very high and specific binding to avidin
 - A radioactive isotope

What for? II

Labeled antibodies provide a tool for selective labelling of a desired protein

- Very high sensitivity
- Very high specifity

Immunohistochemistry I

Principle

Immunohistochemistry II

Problem: Non-specific binding

- Binding of antibodies occurs to all types of proteins
- Relevant in all antibody applications
- Lower affinity
- Increased after fixation
- Increased at crushed cells, necrotic or apoptotic cells

Solution: Blocking

Blocking Reagents

- Binding by same non-specific, low-affinity mechanism as Antibodies
- Ideal: (non-vaccinated) Serum of donorspecies as the antibody
- Typically: Fat-free dry milk powder, casein, gelatin, albumin, (PEG, Tween), commercial mixes

Indirect Immunochemistry

Purpose

- Antibody is not available in the labeled form
- Signal amplification when polyclonal secondary Ab.

Disadvantage

 Loss of antigen – signal linearity

Primary antibody

Secondary antibody: labeled; against the species of the primary Ab.

Substrates for Immunochemistry

Peroxidase

- 3,3' Diaminobenzidine (DAB) brown product, product insoluble in water and ethanol; highly toxic
- 3-amino-9-methylcarbazole (AEC): rose-red product, product soluble in ethanol. Fading in light
- 4-Chloro-1-naphthol (CN): blue product, product soluble in alcohol, product tends to diffuse
- TMB: blue product, with H₂SO₄ yellow. Product soluble in water

Alkaline Phosphatase

- Fast Red TR, Fast Blue BB: bright red or blue product; product soluble in alcohol
- New Fuchsin: red product; product non soluble in alcohol
- 4-Nitrophenyl Phosphate (4-NPP): Yellow product, soluble in water

Immunofluorescence

- Same methods as for immunochemistry
 - Antibody is labeled with a fluorescent molecule (FITC, PE)
 - No chemical reaction necessary
 - More colors possible
 - Higher sensitivity
 - Inspection requires a specially equipped microscope (Hg high pressure lamp, filter blocks)
 - Not a transmission microscopy but reflection microscopy → suitable for non-transparent materials

Flow Cytometry (FACS)

- Single-cell suspension
- Cells are stained with fluorescent antibodies
- Cells pass one-by one through a laser beam, which induces the fluorescence
 - Scattering of the laser light as such gives information about the size and structure of the cell
- Fluorescence (several colors) is detected (quantatively) for each individual cell
- Information, which antigens are expressed together...
- Sorting according to antibody staining possible

Flow Cytometry

1D Plot

Pitfalls

- No cross-reactivity of the antibody with the species of your sample
 - This almost certainly happens if the antibody is produced in the same species as your sample (Ab from mouse and tissue or cells also from mouse)
- Cross-reactivity of the antibody with other proteins
- Antibody recognizes only native epitopes, but not after formalin or ethanol fixation
- Epitopes may be not stable at high temperature
- (antibodies cannot pass a cell membrane)

Immunofluorescence Protocol

Staining of Cells on Stainless Steel Samples

20min Fixation in PBS-Formalin

3x10min wash in PBS

5min 0.2% Triton X/PBS-FBS pH 7.3, 0°C

3x10min wash in PBS-FBS

min 1h primary antibody in PBS-FBS at RT

3x10min wash in PBS-BSA

min 1h sec. antibody 1:50 in PBS-FBS

2x10min wash in PBS-FBS

Rat Bone Marrow Cells on stainless steel. 8h adhesion time.

Green: Vinculin Red: f-Actin Blue: Nucleus

Enzyme Linked Immunosorbent Assay ELISA

Principle of the classical "Sandwich ELISA"

Calibration Curve

ELISA (II)

Purpose:

- Measuring the concentration of a solvable protein: mediator, enzyme, dissolved cell component...; frequently in cell culture supernatant
- Concentration often in µg/ml or pg/ml range

Specifics

- Requires a pair of antibodies: capture Ab and detection Ab against two epitopes of the same protein
- Calibration curve with known concentrations must be determined for every test
- Double measurement of the samples is recommended

Competitive ELISA

Incubate with labeled substrate and unknown concentration of non-labeled substrate

- Labeled substrate
- Sample substrate (unknown concentration)

- (1) Wash
- (2) Color reaction

- Use if only one antibody is available
- Requires a labeled substrate at a constant concentration
- The non-labeled molecules of the sample and the labeled test compete with the binding places of the antibody
- Signal decreases with increasing concentration of the target molecule

Juantification of Surface-Bound Molecules

Block free/non-specific binding places

- Antibody binding and detection in the standard method
- Mainly it allows only a relative quantification and no absolute quantification (ng/cm²)
- False low result, if the antigen binds with the target-epitope of the antibody to the surface (steric hindrance)

Limitations of ELISA

- False negative/ low results
 - No cross-reactivity between ELISA-AB's and the species of your sample
 - Epitopes are hidden/ covered
- False positive results: ELISA says nothing about the biological activity of the molecule
 - ELISA detects also degradation products/ fragments
 - ELISA detects also products with inhibitor
 - ELISA detects also inactive precursor molecules

SDS Polyacrylamide Gel Electrophoresis SDS-PAGE

Purpose

 Use to split up a mixture of proteins by their size (molecular mass)

Background

- Sodium dodecylsulphate (SDS) is a negatively charged detergent, which binds to proteins and gives them a constant charge-to-mass ratio
- Polyacrylamide is a gel. It forms a meshwork with adjustable pore size in the range of the size of a protein
- In an electric field the lighter proteins with SDS migrate faster than the heavy ones.

SDS Gel Electrophoresis

Western-Blot (Immuno-Blot)

Method

- Transfer the proteins from the SDS-PAGE to a (cellulose) membrane
- Incubate in blocking solution
- Stain with antibodies for your desired protein

Purpose

- Higher sensitivity than PAGE
- Direct identification of the protein
- Correlation with size/ molecular weight