

Pharmacokinetics and Drug Release

Pharmacokinetics

Pharmacokinetics in general is determined by:

- Absorption
- Distribution
 - Solubility
 - Size of compartment
 - Perfusion
- Metabolism
- Elimination

Drug Concentration over Time

Compartments

Compartments

Physical Volumes (L/kg body weight) of some body compartments

Compartment Volume

Example Drug

- Water
 - Total Body water: 0.6 l/kg
 - Extracellular water: 0.2 l/kg
 - Blood: 0.08 l/kg
 - Plasma: 0.04 l/kg
- Fat: 0.2-0.35 l/kg
- Bone: 0.07 l/kg

small H₂O soluble molecules, e.g. ethanol

larger H₂O soluble molecules, e.g.

gentamicin

Strongly protein-bound molecules or large

molecules, e.g. heparin

highly lipid soluble molecules,

e.g. narcosis gases or DTT

certain ions, e.g. Fluorine, Pb

Drug Distribution

In the equilibrium state situation:

 The drug has the same <u>partial pressure</u> in every compartment

The partial pressure depends on the <u>solubility</u>
and <u>concentration</u> (= amount / volume)

 The time to reach the steady state situation depends also on the diffusion properties and the perfusion of the compartment

Drug Distribution

Exchange between Compartments depends upon

- Chemical structure of drug
- Rate of blood flow
- Ease of transport through membrane
- Binding of drug to proteins in blood
- Elimination processes

Distribution in Compartments

- Solubility
 - lonidized (charged) molecules (and polar molecules) are more soluble in aqueous solutions
 - Blood
 - Extracellular space
 - Intracellular space
 - neutral molecules are more soluble in fat
 - Adipose tissue
 - Brain
 - Cell membranes
- Ion Trapping
 - Low pH: weak acids accept one proton ⇒ neutral
 - High pH: weak bases give off one proton ⇒ neutral

Effects of pH Partitioning

- Urinary acidification
 - accelerates the excretion of weak bases and retard that of weak acids
 - alkalination has the opposite effects
- Increasing plasma pH (by addition of NaHCO₃)
 - weakly acidic drugs will be extracted from the CNS into the plasma
 - reducing plasma pH (by administering a carbonic anhydrase inhibitor) will cause weakly acidic drugs to be concentrated in the CNS, increasing their efficiency
- Inflammatory tissue generally has low pH
 - Acidic drugs (antibiotics, analgetics) do not reach high concentrations there

Partitioning into Fat Tissue

- A large, non-polar compartment.
- Fat has low blood supply less than 2% of cardiac output, so drugs are delivered to and resorbed from fat relatively slowly.
- Brain is the other non-polar compartment, but blood supply is high.
- For practical purposes: Partition into body fat important following acute dosing only for a few highly lipid-soluble drugs and environmental contaminants which are poorly metabolized and remain in body for long period of time

ect of Protein Binding on Distribution

Protein Binding

Protein-bound drugs have no effect!

- Albumin: binds many acidic drugs and a few basic drugs
- Beta-globulin and an α₁acid glycoprotein have also been found to bind certain basic drugs
- Protein binding depends on the ionization of the drug ⇒ pH dependence
- Renal failure, inflammation, fasting, malnutrition can have effect on plasma protein binding.
- Competition from other drugs can also affect protein binding.

(Local) Drug Release Systems

Drug Release Systems

Intention

- Prolonged release of the drug
- Provide a highly active drug at locally sufficient concentration but no effect on other organs/ the body as a whole
 - (local effect but no systemic effect)
- No first pass effect (degradation in the liver)

Requirements

- System with continuous slow release
 - Release rate and duration adjusted to the local requirements
- Drug should stay locally and not flow away
 - No flow conditions
 - Non-soluble/ lipophilic drug

Standard Drug Release System

Drug molecules

- embedded in the pores of a foam/ sponge
- in a polymer
- Adsorbed on a meshwork/ nonwoven
- Drug release by diffusion processes
- Initially very high release rates
 - Higher concentration available
 - Shorter diffusion ways
 - Active push-out by invading water
- ⇒ Generally very inconstant release rates

Standard Drug Release System

More constant release kinetics by

- Drug-free cover layer
- Formation of multilayer systems with different diffusion rates
- (ion implantation into the surface)
 - Destroys the drug in the surface layer
 - Carbonizes the surfaces: lower diffusion rate

Standard Drug Release System

Polymers as Drug Release System

- Drug incorporation by diffusion will result in highest concentrations outside and lower concentrations inside ⇒ Release will be more inhomogeneous
- Drug incorporation during polymerization
 - ⇒ Reactive monomers may destroy the drug

vanced (Proposed) Release Systems

- **Drug**
- Polymer/ Carrier
- Enzyme (e.g. Esterase)

Drug release by enzymatic degradation of the matrix

- Release of the drug then by diffusion
- Enzymatic release of the drug
- Most constant release profile (dependent mainly on surface)
- Release rate individually different
- Compatibility of the degradation products?